Sunday, December 29, 2013

Improving the quality of mental health and substance use treatment: how can Informatics help?


According to the 2012 National Survey on Drug Use and Health, an estimated 43.7 million adults aged 18 or older in the United States had mental illness in the past year. This represents 18.6 percent of all adults in this country. Among those 43.7 million adults, 19.2 percent (8.4 million adults) met criteria for a substance use disorder (i.e., illicit drug or alcohol dependence or abuse). In 2012, an estimated 9.0 million adults (3.9 percent) aged 18 or older had serious thoughts of suicide in the past year.

Mental health and substance use are often associated with other issues such as:

  • Co-morbidity involving other chronic diseases like HIV, hepatitis, diabetes, and cardiovascular disease.

  • Overdose and emergency care utilization.

  • Social issues like incarceration, violence, homelessness, and unemployment.
It is now well established that addiction is a chronic disease of the brain and should be treated as such from a health and social policy standpoint.


The regulatory framework

  • The Affordable Care Act (ACA) requires non-grandfathered health plans in the individual and small group markets to provide essential health benefits (EHBs) including mental health and substance use disorder benefits.  

  • Starting in 2014, insurers can no longer deny coverage because of a pre-existing mental health condition.

  • The ACA requires health plans to cover recommended evidence-based prevention and screening services including depression screening for adults and adolescents and behavioral assessments for children.

  • On November 8, 2013, HHS and the Departments of Labor and Treasury released the final rules implementing the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act of 2008 (MHPAEA). 

  • Not all behavioral health specialists are eligible to the Meaningful Use EHR Incentive program created by the Health Information Technology for Economic and Clinical Health Act (HITECH) of 2009.

 

Implementing Clinical Practice Guidelines (CPGs) with Clinical Decision Support (CDS) systems

 

Clinical Decision Support (CDS) can help address key challenges in mental health and substance use treatment such as:

  • Shortages and high turnover in the addiction treatment workforce.

  • Insufficient or lack of adequate clinician education in mental health and addiction medicine.

  • Lack of implementation of available evidence-based clinical practice guideline (CPGs) in mental health and addiction medicine.
For example, there are a number of scientifically validated CPGs for the Medication Assisted Treatment (MAT) of opioid addiction using methadone or buprenorphine. These evidence-based CPGs can be translated into executable CDS rules using business rule engines. These executable clinical rules should also be seamlessly integrated with clinical workflows.

The complexity and costs inherent in capturing the medical knowledge in clinical guidelines and translating that knowledge into executable code remains an impediment to the widespread adoption of CDS software. Therefore, there is a need for standards that facilitate the sharing and interchange of CDS knowledge artifacts and executable clinical guidelines. The ONC Health eDecision Initiative has published specifications to support the interoperability of CDS knowledge artifacts and services.

Ontologies as knowledge representation formalism are well suited for modeling complex medical knowledge and can facilitate reasoning during the automated execution of clinical guidelines based on patient data at the point of care.

The typical Clinical Practice Guideline (CPG) is 50 to 150 pages long. Clinical Decision Support (CDS) should also include other forms of cognitive aid such as Electronic Checklists, Data Visualization, Order Sets, and Infobuttons.

The issues of human factors and usability of CDS systems as well as CDS integration with clinical workflows have been the subject of many research projects in healthcare informatics. The challenge is to be bring these research findings into the practice of developing clinical systems software.


Learning from Data


Learning what works and what does not work in clinical practice is important for building a learning health system. This can be achieved by incorporating the results of Comparative Effectiveness Research (CER) and Patient-Centered Outcome Research (PCOR) into CDS systems. Increasingly, outcomes research will be performed using observational studies (based on real world clinical data) which are recognized as complementary to randomized control trials (RCTs). For example, CER and PCOR can help answer questions about the comparative effectiveness of pharmacological and  psychotherapeutic interventions in mental health and substance abuse treatment. This is a form of Practice-Based Evidence (PBE) that is necessary to close the evidence loop.

Three factors are contributing to the availability of massive amounts of clinical data: the rising adoption of EHRs by providers (thanks in part to the Meaningful Use incentive program), medical devices (including those used by patients outside of healthcare facilities), and medical knowledge (for example in the form of medical research literature). Massively parallel  computing platforms such as Apache Hadoop or Apache Spark can process humongous amounts of data (including in real time) to obtain actionable insights for effective clinical decision making.

The use of predictive modeling for personalized medicine (based on statistical computing and machine learning techniques) is becoming a common practice in healthcare delivery as well. These models can predict the health risk of patients (for pro-active care) based on their individual health profiles and can also help predict which treatments are more likely to lead to positive outcomes.

Embedding Visual Analytics capabilities into CDS systems can help clinicians obtain deep insight for effective understanding, reasoning, and decision making through the visual exploration of massive, complex, and often ambiguous data. For example, Visual Analytics can help in comparing different interventions and care pathways and their respective clinical outcomes for a patient or population of patients over a certain period of time through the vivid showing of causes, variables, comparisons, and explanations.


Genomics of Addiction and Personalized Medicine


Advances in genomics and pharmacogenomics are helping researchers understand treatment response variability among patients in addiction treatment. Clinical Decision Support (CDS) systems can also be used to provide cognitive support to clinicians in providing genetically guided treatment interventions.


Quality Measurement for Mental Health and Substance Use Treatment


An important implication of the shift from a fee-for-service to a value-based healthcare delivery model is that existing process measures and the regulatory requirements to report them are no longer sufficient.

Patient-reported outcomes (PROs) and patient-centered measures include essential metrics such as mortality, functional status, time to recovery, severity of side effects, and remission (depression remission at six and twelve months). These measures should take into account the values, goals, and wishes of the patient. Therefore patient-centered outcomes should also include the patient's own evaluation of the care received.

Another issue to be addressed is the lack of data elements in Electronic Medical Record (EMR) systems for capturing, reporting, and analyzing PROs. This is the key to accountability and quality improvement in mental health and substance use treatment.


Using Natural Language Processing (NLP) for the automated processing of clinical narratives


Electronic documentation in mental health and substance use treatment is often captured in the form of narrative text such as psychotherapy notes. Natural Language Processing (NLP) and machine learning tools and techniques (such as named entity recognition) can be used to extract clinical concepts and other insight from clinical notes.

Another area of interest is Clinical Question Answering (CQA) that would allow clinicians to ask questions in natural language and extract clinical answers from very large amounts of unstructured sources of medical knowledge. PubMed has more than 23 millions citations for biomedical literature from MEDLINE, life science journals, and online books. It is impossible for the human brain to keep up with that amount of knowledge.



Computer-Based Cognitive Behavioral Therapy (CCBT) and mHealth


According to a report published last year by the California HealthCare Foundation and titled The Online Couch: Mental Health Care on the Web:

"Computer-based cognitive behavioral therapy (CCBT) cost-effectively leverages the Internet for coaching patterns in self-driven or provider-assisted programs. Technological advances have enabled computer systems designed to replicate aspects of cognitive behavior therapy for a growing range of mental health issues".
An example of a successful nationwide adoption of CCBT is the online behavioral therapy site Beating the Blues in the United Kingdom which has been proven to help patients suffering from anxiety and mild to moderate depression. Beating the Blues has been recommended for use in the NHS by the National Institute for Health and Clinical Excellence (NICE).

In addition, there is growing evidence to support the efficacy of mobile health (mHealth) technologies for supporting patent engagement and activation in health behavior change (e.g., smoking cessation).

 

Technologies in support of a Collaborative Care Model


There is sufficient evidence to support the efficacy of the collaborative care model (CCM) in the treatment of chronic mental health and substance use conditions.The CCM is based on the following principles:
  • Coordinated care involving a multi-disciplinary care team.

  • Longitudinal care plan as the backbone of care coordination.

  • Co-location of primary care and mental health and substance use specialists.

  • Case management by a Care Manager. 
Implementing an effective collaborative care model will require a new breed of advanced clinical collaboration tools and capabilities such as:
  • Conversations and knowledge sharing using tools like video conferencing for virtual two-way face-to-face communication between clinicians (see my previous post titled Health IT Innovations for Care Coordination).

  • Clinical content management and case management tools.

  • File sharing and syncing allowing the longitudinal care plan to be synchronized and shared among all members of the care team.

  • Light-weight and simple clinical data exchange standards and protocols for content, transport, security, and privacy. 

 

Patient Consent and Privacy


Because of the stigma associated with mental health and substance use, it is important to give patients control over the sharing of their medical record. Patients consent should be obtained about what type information is shared, with whom, and for what purpose. The patient should also have access to an audit trail of all data exchange-related events. Current paper-based consent processes are inefficient and lack accountability. Web-based consent management applications facilitate the capture and automated enforcement of patient consent directives (see my previous post titled Patient privacy at web scale).