Showing posts with label genomics. Show all posts
Showing posts with label genomics. Show all posts

Monday, August 25, 2014

Ontologies for Addiction and Mental Disease: Enabling Translational Research and Clinical Decision Support

In a previous post titled Why do we need ontologies in healthcare applications, I elaborated on what ontologies are and why they are different from information models of data structures like relational database schemas and XML schemas commonly used in healthcare informatics applications. In this post, I discuss two interesting applications of ontology engineering related to addiction and mental disease treatment. The first is the use of ontologies for achieving semantic interoperability in  translational research. The second is the use of ontologies for modeling complex medical knowledge in clinical practice guidelines (CPGs) for the purpose of automated reasoning during execution in clinical decision support systems (CDS) at the point of care.

Why Semantic Interoperability is needed in biomedical translational research?


In order to accelerate the discovery of new effective therapeutics for mental health and addiction treatment, there is a need to integrate data across disciplines spanning biomedical research and clinical care delivery [1]. For example, linking data across disciplines can facilitate a better understanding of treatment response variability among patients in addiction treatment. These disciplines include:

  • Genetics, the study of genes.
  • Chemistry, the study of chemical compounds including substances of abuse like heroin.
  • Neuroscience, the study of the nervous system and the brain (addiction is a chronic disease of the brain)
  • Psychiatry which is focused on the diagnosis, treatment, and prevention of addiction and mental disorders.

Each of these disciplines has its own terminology or controlled vocabularies. In the clinical domain for example, DSM5 and RrxNorm are used for documenting clinical care. In biomedical research, several ontologies have been developed over the last few years including:
  • The Gene Ontology (GO)
  • The Chemical Entities of Biological Interest Ontology (CHEBI)
  • NeuroLex, an OWL ontology covering major domains of neuroscience: anatomy, cell, subcellular, molecule, function, and dysfunction.

To facilitate semantic interoperability between these ontologies, there are best practices established by the Open Biomedical Ontology (OBO) community. An example of best practice is the use of an upper-level ontology called the Basic Formal Ontology (BFO) which acts as a common foundational ontology upon which  new ontologies can be created. OBO ontologies and principles are available on the OBO Foundry web site.

Among the ontologies available on the OBO Foundry is the Mental Functioning Ontology (MF) [2, 3]. The MF is being developed as a collaboration between the University of Geneva in Switzerland and the University at Buffalo in the United States. The project also includes a Mental Disease Ontology (MD) which extends the MF and the Ontology for General Medical Science (OGMS). The Basic Formal Ontology (BFO) is an upper-level ontology for both the MF and the OGMS. The picture below is a view of the class hierarchy of the MD showing details of the class "Paranoid Schizophrenia" in the right pane of the windows of the beta release of Protege 5, an open source ontology development environment (click on the image to enlarge it).

The following is a tree view of the "Mental Disease Course" class (click on the image to enlarge it):



Ontology constructs defined by the OWL2 language can help establish common semantics (meaning) and relationships between entities across domains. These constructs provide automated inferencing capabilities such as equivalence (e.g., owl:sameAs and owl:equivalentClass) and subsumption (e.g., rdfs:subClassOf) relationships between entities.

In addition, publishing data sources following Linked Open Data (LOD) principles and semantic search using federated SPARQL queries can help answer new research questions. Another application is semantic annotation for natural language processing (NLP) applications.

 

Ontologies as knowledge representation formalism for clinical decision support (CDS)


As knowledge representation formalism, ontologies are well suited for modeling complex medical knowledge and can facilitate reasoning during the automated execution of clinical practice guidelines (CPGs) and Care Pathways (CPs) based on patient data at the point of care. Several approaches to modelling CPGs and CPs have been proposed in the past including PROforma, HELEN, EON, GLIF, PRODIGY, and SAGE. However, the lack of free and open source tooling has been a major impediment to a wide adoption of these knowledge representation formalisms. OWL has the advantage of being a widely implemented W3C Recommendation with available mature open source  tools.

In practice, the medical knowledge contained in CPGs can be manually translated into IF-THEN statements in most programming languages. Executable CDS rules (like other complex types of business rules) can be implemented with a production rule engine using forward chaining. This is the approach taken by OpenCDS and some large scale CDS implementations in real world healthcare delivery settings. This allows CDS software developers to externalize the medical knowledge contained in clinical guidelines in the form of declarative rules as opposed to embedding that knowledge in procedural code. Many viable open source business rule management systems (BRMS) are available today and provide capabilities such as a rule authoring user interface, a rules repository, and a testing environment.

However, production rule systems have a limitation. They do not scale because they require writing a rule for each clinical concept code (there are more than 311,000 active concepts in SNOMED CT alone). An alternative is to exploit the class hierarchy in an ontology so that subclasses of a given superclass can inherit the clinical rules that are applicable to the superclass (this is called subsumption). In addition to subsumption, an OWL ontology also support reasoning with description logic (DL) axioms [4].

An ontology designed for a clinical decision support (CDS) system can integrate the clinical rules from a CPG, a domain ontology like the Mental Disorder (MD) ontology, and the patient medical record from an EHR database in order to provide inferences in the form of treatment recommendations at the point of care. The OWL API [5] facilitates the integration of ontologies into software applications. It supports inferencing using reasoners like Pellet and HermiT. OWL2 reasoning capabilites can be enhanced with rules represented in SWRL (Semantic Web Rule Language) which is implemented by reasoners like Pellet as well as the Protege OWL development environement. In addition to inferencing, another benefit of an OWL-based approach is transparency: the CDS system can provide an explanation or justification of how it arrives at the treatment recommendations.

Nonetheless, these approaches are not mutually exclusive: a production rule system can be integrated with business processes, ontologies, and predictive analytics models. Predictive analytics models provide a probabilistic approach to treatment recommendations to assist in the clinical decision making process.

References


[1]  Janna Hastings, Werner Ceusters, Mark Jensen, Kevin Mulligan and Barry Smith. Representing mental functioning: Ontologies for mental health and disease. Proceedings of the Mental Functioning Ontologies workshop of ICBO 2012, Graz, Austria.

[2]  Ceusters, W. and Smith, B. (2010a). Foundations for a realist ontology of mental disease. Journal of Biomedical Semantics, 1(1), 10.

[3] Hastings, J., Smith, B., Ceusters, W., and Mulligan, K. (2012). The mental functioning ontology. http://code.google.com/p/mental-functioning-ontology/, last accessed August 24, 2014

[4] Sesen MB, Peake MD, Banares-Alcantara R, Tse D, Kadir T, Stanley R, Gleeson F, Brady M. 2014 Lung Cancer Assistant: a hybrid clinical decision support application for lung cancer care. J. R. Soc. Interface 11: 20140534.

[5] Matthew Horridge, Sean Bechhofer. The OWL API: A Java API for OWL Ontologies Semantic Web Journal 2(1), Special Issue on Semantic Web Tools and Systems, pp. 11-21, 2011.

Sunday, December 29, 2013

Improving the quality of mental health and substance use treatment: how can Informatics help?


According to the 2012 National Survey on Drug Use and Health, an estimated 43.7 million adults aged 18 or older in the United States had mental illness in the past year. This represents 18.6 percent of all adults in this country. Among those 43.7 million adults, 19.2 percent (8.4 million adults) met criteria for a substance use disorder (i.e., illicit drug or alcohol dependence or abuse). In 2012, an estimated 9.0 million adults (3.9 percent) aged 18 or older had serious thoughts of suicide in the past year.

Mental health and substance use are often associated with other issues such as:

  • Co-morbidity involving other chronic diseases like HIV, hepatitis, diabetes, and cardiovascular disease.

  • Overdose and emergency care utilization.

  • Social issues like incarceration, violence, homelessness, and unemployment.
It is now well established that addiction is a chronic disease of the brain and should be treated as such from a health and social policy standpoint.


The regulatory framework

  • The Affordable Care Act (ACA) requires non-grandfathered health plans in the individual and small group markets to provide essential health benefits (EHBs) including mental health and substance use disorder benefits.  

  • Starting in 2014, insurers can no longer deny coverage because of a pre-existing mental health condition.

  • The ACA requires health plans to cover recommended evidence-based prevention and screening services including depression screening for adults and adolescents and behavioral assessments for children.

  • On November 8, 2013, HHS and the Departments of Labor and Treasury released the final rules implementing the Paul Wellstone and Pete Domenici Mental Health Parity and Addiction Equity Act of 2008 (MHPAEA). 

  • Not all behavioral health specialists are eligible to the Meaningful Use EHR Incentive program created by the Health Information Technology for Economic and Clinical Health Act (HITECH) of 2009.

 

Implementing Clinical Practice Guidelines (CPGs) with Clinical Decision Support (CDS) systems

 

Clinical Decision Support (CDS) can help address key challenges in mental health and substance use treatment such as:

  • Shortages and high turnover in the addiction treatment workforce.

  • Insufficient or lack of adequate clinician education in mental health and addiction medicine.

  • Lack of implementation of available evidence-based clinical practice guideline (CPGs) in mental health and addiction medicine.
For example, there are a number of scientifically validated CPGs for the Medication Assisted Treatment (MAT) of opioid addiction using methadone or buprenorphine. These evidence-based CPGs can be translated into executable CDS rules using business rule engines. These executable clinical rules should also be seamlessly integrated with clinical workflows.

The complexity and costs inherent in capturing the medical knowledge in clinical guidelines and translating that knowledge into executable code remains an impediment to the widespread adoption of CDS software. Therefore, there is a need for standards that facilitate the sharing and interchange of CDS knowledge artifacts and executable clinical guidelines. The ONC Health eDecision Initiative has published specifications to support the interoperability of CDS knowledge artifacts and services.

Ontologies as knowledge representation formalism are well suited for modeling complex medical knowledge and can facilitate reasoning during the automated execution of clinical guidelines based on patient data at the point of care.

The typical Clinical Practice Guideline (CPG) is 50 to 150 pages long. Clinical Decision Support (CDS) should also include other forms of cognitive aid such as Electronic Checklists, Data Visualization, Order Sets, and Infobuttons.

The issues of human factors and usability of CDS systems as well as CDS integration with clinical workflows have been the subject of many research projects in healthcare informatics. The challenge is to be bring these research findings into the practice of developing clinical systems software.


Learning from Data


Learning what works and what does not work in clinical practice is important for building a learning health system. This can be achieved by incorporating the results of Comparative Effectiveness Research (CER) and Patient-Centered Outcome Research (PCOR) into CDS systems. Increasingly, outcomes research will be performed using observational studies (based on real world clinical data) which are recognized as complementary to randomized control trials (RCTs). For example, CER and PCOR can help answer questions about the comparative effectiveness of pharmacological and  psychotherapeutic interventions in mental health and substance abuse treatment. This is a form of Practice-Based Evidence (PBE) that is necessary to close the evidence loop.

Three factors are contributing to the availability of massive amounts of clinical data: the rising adoption of EHRs by providers (thanks in part to the Meaningful Use incentive program), medical devices (including those used by patients outside of healthcare facilities), and medical knowledge (for example in the form of medical research literature). Massively parallel  computing platforms such as Apache Hadoop or Apache Spark can process humongous amounts of data (including in real time) to obtain actionable insights for effective clinical decision making.

The use of predictive modeling for personalized medicine (based on statistical computing and machine learning techniques) is becoming a common practice in healthcare delivery as well. These models can predict the health risk of patients (for pro-active care) based on their individual health profiles and can also help predict which treatments are more likely to lead to positive outcomes.

Embedding Visual Analytics capabilities into CDS systems can help clinicians obtain deep insight for effective understanding, reasoning, and decision making through the visual exploration of massive, complex, and often ambiguous data. For example, Visual Analytics can help in comparing different interventions and care pathways and their respective clinical outcomes for a patient or population of patients over a certain period of time through the vivid showing of causes, variables, comparisons, and explanations.


Genomics of Addiction and Personalized Medicine


Advances in genomics and pharmacogenomics are helping researchers understand treatment response variability among patients in addiction treatment. Clinical Decision Support (CDS) systems can also be used to provide cognitive support to clinicians in providing genetically guided treatment interventions.


Quality Measurement for Mental Health and Substance Use Treatment


An important implication of the shift from a fee-for-service to a value-based healthcare delivery model is that existing process measures and the regulatory requirements to report them are no longer sufficient.

Patient-reported outcomes (PROs) and patient-centered measures include essential metrics such as mortality, functional status, time to recovery, severity of side effects, and remission (depression remission at six and twelve months). These measures should take into account the values, goals, and wishes of the patient. Therefore patient-centered outcomes should also include the patient's own evaluation of the care received.

Another issue to be addressed is the lack of data elements in Electronic Medical Record (EMR) systems for capturing, reporting, and analyzing PROs. This is the key to accountability and quality improvement in mental health and substance use treatment.


Using Natural Language Processing (NLP) for the automated processing of clinical narratives


Electronic documentation in mental health and substance use treatment is often captured in the form of narrative text such as psychotherapy notes. Natural Language Processing (NLP) and machine learning tools and techniques (such as named entity recognition) can be used to extract clinical concepts and other insight from clinical notes.

Another area of interest is Clinical Question Answering (CQA) that would allow clinicians to ask questions in natural language and extract clinical answers from very large amounts of unstructured sources of medical knowledge. PubMed has more than 23 millions citations for biomedical literature from MEDLINE, life science journals, and online books. It is impossible for the human brain to keep up with that amount of knowledge.



Computer-Based Cognitive Behavioral Therapy (CCBT) and mHealth


According to a report published last year by the California HealthCare Foundation and titled The Online Couch: Mental Health Care on the Web:

"Computer-based cognitive behavioral therapy (CCBT) cost-effectively leverages the Internet for coaching patterns in self-driven or provider-assisted programs. Technological advances have enabled computer systems designed to replicate aspects of cognitive behavior therapy for a growing range of mental health issues".
An example of a successful nationwide adoption of CCBT is the online behavioral therapy site Beating the Blues in the United Kingdom which has been proven to help patients suffering from anxiety and mild to moderate depression. Beating the Blues has been recommended for use in the NHS by the National Institute for Health and Clinical Excellence (NICE).

In addition, there is growing evidence to support the efficacy of mobile health (mHealth) technologies for supporting patent engagement and activation in health behavior change (e.g., smoking cessation).

 

Technologies in support of a Collaborative Care Model


There is sufficient evidence to support the efficacy of the collaborative care model (CCM) in the treatment of chronic mental health and substance use conditions.The CCM is based on the following principles:
  • Coordinated care involving a multi-disciplinary care team.

  • Longitudinal care plan as the backbone of care coordination.

  • Co-location of primary care and mental health and substance use specialists.

  • Case management by a Care Manager. 
Implementing an effective collaborative care model will require a new breed of advanced clinical collaboration tools and capabilities such as:
  • Conversations and knowledge sharing using tools like video conferencing for virtual two-way face-to-face communication between clinicians (see my previous post titled Health IT Innovations for Care Coordination).

  • Clinical content management and case management tools.

  • File sharing and syncing allowing the longitudinal care plan to be synchronized and shared among all members of the care team.

  • Light-weight and simple clinical data exchange standards and protocols for content, transport, security, and privacy. 

 

Patient Consent and Privacy


Because of the stigma associated with mental health and substance use, it is important to give patients control over the sharing of their medical record. Patients consent should be obtained about what type information is shared, with whom, and for what purpose. The patient should also have access to an audit trail of all data exchange-related events. Current paper-based consent processes are inefficient and lack accountability. Web-based consent management applications facilitate the capture and automated enforcement of patient consent directives (see my previous post titled Patient privacy at web scale).